Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
The Korean Journal of Parasitology ; : 43-48, 2006.
Article in English | WPRIM | ID: wpr-60517

ABSTRACT

Experimental murine models with high, intermediate and low levels of genetically based susceptibility to Leishmania major infection reproduce almost entire spectrum of clinical manifestations of the human disease. There are increasing non-comparative studies on immune responses against isolated antigens of L. major in different murine strains. The aim of the present study was to find out whether there is an antigen that can induce protective immune response in resistant and susceptible murine strains. To do that, crude antigenic extract of procyclic and metacyclic promastigotes of L. major was prepared and subjected to SDS-PAGE electrophoresis. Western-blotting was used to search for antigen(s) capable of raising high antibody level of IgG2a versus IgG1 in the sera of both infected resistant and susceptible strains. Two novel antigens from metacyclic promastigotes of L. major (140 and 152 kDa) were potentially able to induce specific dominant IgG2a responses in BALB/c and C57BL/6 mice. The 2 antigens also reacted with IgG antibody of cutaneous leishmaniasis patients. We confirm that 140 and 152 kDa proteins of L. major promastigotes are inducing IgG production in mice and humans.


Subject(s)
Mice , Humans , Female , Animals , Protozoan Proteins/immunology , Mice, Inbred C57BL , Mice, Inbred BALB C , Life Cycle Stages/immunology , Leishmaniasis, Cutaneous/immunology , Leishmania major/immunology , Immunoglobulin G/biosynthesis , Blotting, Western/methods , Antigens, Protozoan/immunology
2.
Asian Pac J Allergy Immunol ; 2002 Dec; 20(4): 257-66
Article in English | IMSEAR | ID: sea-36699

ABSTRACT

A monoclonal antibody (MoAb) against a recombinant glutathione S-transferase (rGST) of F. gigantica was produced in BALB/c mice. Reactivity and specificity of this monoclonal antibody was assessed by ELISA and immunoblotting. Six stable clones, namely 3A3, 3B2, 3C6, 4A6, 4B1 and 4D6 were obtained, All these MoAb reacted with rGST and native GST at a molecular weight of 28 kDa and found to be IgG1, kappa-light chain isotypes. These MoAb cross-reacted with Schistosoma mansoni and Schistosoma japonicum antigens at molecular weights of 28 and 26 kDa, respectively, but no cross-reactions were detected with antigens of Eurytrema and Paramphistomum spp. The localization of GST in metacercaria, 7-week-old juvenile and adult F. gigantica was performed by immunofluorescence technique, using MoAb as well as polyclonal antibody (PoAb) to the native protein as probes. In general, all clones of MoAb gave similar results and the pattern was quite similar to staining by PoAb. The fluorescence was intense, which implied the presence of a high concentration of GST in the parenchymal tissue in all stages of the parasite. However, the parenchymal cells were not evenly stained which implied the existence of subpopulations of this cell type with regard to GST production and storage. In addition, in adult and juvenile stages a moderate fluorescence was present in the basal layer of the tegument, while light fluorescence was observed in the caecal epithelium, cells in the ovary, testis and vitelline gland of the adult. In the metacercaria stage, in addition to parenchymal tissue, the tegument and tegumental cells were stained relatively more intense with MoAb and PoAb than in other stages.


Subject(s)
Animals , Antibodies, Helminth , Antibodies, Monoclonal/chemistry , Antibody Specificity , Antigens, Helminth/immunology , Cross Reactions , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Fasciola/immunology , Fluorescent Antibody Technique , Glutathione Transferase/immunology , Immunoblotting , Life Cycle Stages/immunology , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Sensitivity and Specificity
3.
The Korean Journal of Parasitology ; : 171-176, 2001.
Article in English | WPRIM | ID: wpr-94815

ABSTRACT

Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria.


Subject(s)
Animals , Humans , Antigens, Protozoan/blood , Biomarkers/blood , Blotting, Western , Life Cycle Stages/immunology , Malaria, Vivax/diagnosis , Mass Screening , Plasmodium vivax/immunology , Recombinant Proteins/blood , Serologic Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL